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Abstract. A method for calculating volume fractions of phases in a system with several simult-
aneously growing phases is proposed. Solutions of the problem for the spaces of dimensionalities 2
and 3 are obtained. The approximation of independent phases, in which the expressions for volume
fractions have the simplest form, is considered. The high accuracy of this approximation is shown.

1. Introduction

The kinetics of a phase transformation process in the case of the formation of a single phase
is described by the well-known expression of Kolmogorov [1] or Johnson, Mehl and Avrami
(JMA) [2–4]:

X(t) = 1 − exp

[
−

∫ t

0
I (t ′)V (t ′, t) dt ′

]
(1)

where: X(t) is the volume fraction of the new phase; I (t) is the nucleation rate; V (t ′, t) is the
volume at time t of a freely growing nucleus formed at time t ′:

V (t ′, t) = gRD(t ′, t) R(t ′, t) =
∫ t

t ′
u(τ) dτ . (2)

Here, u(t) is the growth rate of a nucleus, R(t ′, t) is its radius; D is the dimensionality; g is a
geometrical factor: g = 2, π , 4π/3 for D = 1, 2, 3, respectively.

In addition to such phase transformations, there can occur phase transformations proc-
eeding via formation of two or more distinct phases simultaneously. One example of
such a process is the solidification of supercooled liquid when it is accompanied by
competitive formation of crystalline and amorphous phases. The hypothesis of availability
of ‘anticrystalline’ clusters along with crystalline ones in a liquid and the role of the former in
the vitrification process was proposed for the first time by Ubbelode [5]. The physical aspects
of this phenomenon were considered in references [6–8], where a calculation of the liquid
solidification kinetics taking into account the competitive formation of two or more phases
was also carried out.

In this connection, the problem of calculating volume fractions of phases in similar
systems, i.e. generalizing expression (1) to this case, is both of interest and topical. As
distinct from the single-phase case, the specific difficulties connected with the difference
in growth rates of phases arise here. In the present paper, a geometrical probability
approach is developed for solving this problem. The expressions for volume fractions as
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well as more simple approximation-of-independent-phases (AIP) expressions are derived for
dimensionalities D = 2, 3 in the framework of Kolmogorov’s model [1, 4]. The analysis of
the solution obtained leads to the conclusion that the AIP expressions provide high accuracy.

2. The single-phase case

In this section the description of the proposed method, which can be called the ‘method of the
critical region’, is given for the case of single-phase transformation. That is, we shall derive
expression (1) differently from references [1, 2].

Let us find the probability dX(t) that the point O taken at random will be transformed to
the growing phase in the time interval [t, t + dt]. To this end, the fulfilment of the following
two conditions is necessary and sufficient: (a) the point O is not transformed before time t ;
(b) the new-phase nucleus able to transform the pointO in the time interval [t, t + dt] appears
at any time t ′, 0 � t ′ � t ; we call this nucleus a critical one. Let Q(t) and dP(t) denote
the probabilities of the first and second events, respectively. Let us consider the space-time
scheme of the process which results in the fulfilment of both conditions.

We specify the region of radius R(t ′, t) with the pointO as its centre (the critical region).
At time t ′ the region boundary is moving at the velocity u(t ′), so the radius decreases from its
greatest value R(0, t) to R(t, t) ≡ 0. As this takes place, the fulfilment of condition (a) means
that the appearance of new-phase centres in this region is not allowed within the time interval
0 � t ′ � t . In reference [1], the function Q(t) is calculated from this condition directly. On
the other hand, Q(t) can be calculated by using condition (b).

The critical centre appearing at t ′ must lie within a ring of width dR(t ′, t), dR(t ′, t) =
(∂R(t ′, t)/∂t)dt , at the distance R(t ′, t) from the point O. Consequently, the probability of
its appearance is

dP(t ′, t) = I (t ′) dt ′ V̇ (t ′, t) dt (3)

where V̇ (t ′, t) ≡ ∂V (t ′, t)/∂t .
The probability for the critical centre to appear within the time interval 0 � t ′ � t is

obtained by integration of (3) with respect to t ′:

dP(t) =
(∫ t

0
I (t ′)V̇ (t ′, t) dt ′

)
dt. (4)

Thus, the simultaneous fulfilment of conditions (a) and (b) yields the following equality
for dX(t):

dX(t) = Q(t)

(∫ t

0
I (t ′)V̇ (t ′, t) dt ′

)
dt. (5)

It is easily seen thatX(t) = 1 −Q(t). Therefore, expression (5) is a differential equation
for X(t). The solution of this equation with respect to the initial condition X(0) = 0 is
expression (1). According to the geometrical definition of probability [9], X(t) yields the
fraction of the material transformed (Q(t) is the fraction of the initial phase).

3. The case of several phases

In the case of a system with a number of new phases greater than one, we also assume the
fulfilment of the initial premises of Kolmogorov’s model [1, 4] for every phase. One of the
restrictions of this model concerns the shape of the nuclei. Though it may be an arbitrary
convex shape, all the nuclei must be geometrically similar to each other and have the same
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orientation. The linear size R(t ′, t) of a nucleus is defined arbitrarily; the geometrical factor g
depends on this definition. The particular case of a spherical shape is used here for simplicity.
Considering the case of another shape merely involves redetermining g. Thus, the results
obtained below pertain equally to the case of an arbitrary shape of the nuclei permitted by
Kolmogorov’s model.

At first, we consider the two-phase case. Let two phases labelled below by indices 1 and 2
grow in the initial phase. The nucleation rates of the two phases are Ii(t) and the growth rates
are ui(t) (i = 1, 2) under the condition u2(t) > u1(t) for all t . We find the probability dX1(t)

(dX2(t)) that an arbitrary point O is transformed to phase 1 (2) in the time interval [t, t + dt].
Generalizing the single-phase case, we specify two regions: 1 and 2 of radii R1(t

′, t) and
R2(t

′, t), respectively, with the point O as the centre (figure 1):

Ri(t
′, t) =

∫ t

t ′
ui(τ ) dτ . (6)

The ring of width �R(t ′, t) = R2(t
′, t)−R1(t

′, t) between the boundaries of regions 1 and 2
will be called region 1–2.

 O R1(t',t)R2(t',t)   1-2

Figure 1. The critical regions in the two-phase problem. The nuclei 1 in region 1–2 are shown by
black circles.

Let us consider conditions (a) and (b) with respect to phase 1. In order that the point O
be transformed in the time interval [t, t + dt] by phase 1, it is necessary and sufficient that the
following conditions should be satisfied: (a) it is not transformed to any phase before time t
(the probability of this event isQ(t)); (b) the critical centre 1 appears at any time t ′, 0 � t ′ � t .

The fulfilment of condition (a) means that the appearance of centres 1 in region 1 is
excluded within the interval 0 � t ′ � t . At the same time, they may appear outside region 1
without any restrictions, since they will not reach the pointO by time t (figure 1). In addition,
the appearance of centres 2 in region 2 is excluded.

The fulfilment of condition (b) implies that a centre 1 must appear at the region-1 boundary
at some time t ′. The probability of this event is given by expression (4). Therefore, the equation
for X1(t) is

dX1(t)/dt = Q(t)

∫ t

0
I1(t

′)V̇1(t
′, t) dt ′. (7)

With respect to phase 2, condition (a) remains the same. Therefore, we consider condition
(b) only. If there were no nuclei 1 in region 1–2, this condition would give equation (7) with
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the replacement of index 1 with 2 for the fraction of phase 2. However, the availability of
nuclei 1 here results in only a part of the ring of volume dV2(t

′, t) being accessible for the
appearance of the critical centre 2. Consequently, we have the following expression for the
probability of its appearance:

dP2(t) =
(∫ t

0
I2(t

′)V̇2(t
′, t)q(1)(t ′, t) dt ′

)
dt (8)

where q(1)(t ′, t) is the probability that the point on the region-2 boundary at which the critical
centre 2 appears at time t ′ lies in the untransformed material.

Accordingly, the expression for the volume fraction of the second phase is

dX2(t)/dt = Q(t)

∫ t

0
I2(t

′)V̇2(t
′, t)q(1)(t ′, t) dt ′. (9)

Integration of the set of equations (9) and (10), in view of the fact that Q = 1 − (X1 + X2),
yields the desired volume fractions:

Q(t) = exp

[
−

∫ t

0
I1(t

′)V1(t
′, t) dt ′ −

∫ t

0
dτ

∫ τ

0
dt ′ I2(t

′)V̇2(t
′, τ )q(1)(t ′, τ )

]
(10)

X1(t) =
∫ t

0
dτ Q(τ)

∫ τ

0
dt ′ I1(t

′)V̇1(t
′, τ ) (11)

X2(t) =
∫ t

0
dτ Q(τ)

∫ τ

0
dt ′ I2(t

′)V̇2(t
′, τ )q(1)(t ′, τ ). (12)

Passing on to the case of n > 2 phases, un(t) > un−1(t) > · · · > u1(t), we add the regions
3, 4, . . . , n of radii Ri(t ′, t), equation (6), in figure 1. Condition (a) results in the scenario that
centres i may appear outside region i only. Consequently, there are nuclei 1, 2, . . . , i−1 in the
ring (i − 1)–i between the boundaries of the regions i − 1 and i, so only the part q(i−1)(t ′, t)
of the volume dVi(t ′, t) is accessible for the appearance of the critical centre i. Thus, the
equation for the phase-i volume fraction is

dXi(t)/dt = Q(t)

∫ t

0
Ii(t

′)V̇i(t ′, t)q(i−1)(t ′, t) dt ′ (13)

where i = 1, 2, . . . , n and q(0) ≡ 1.
Hence, the following expressions for volume fractions of phases are obtained:

Q(t) = exp

[
−

∫ t

0
I1(t

′)V1(t
′, t) dt ′ −

n∑
i=2

∫ t

0
dτ

∫ τ

0
dt ′ Ii(t ′)V̇i(t ′, τ )q(i−1)(t ′, τ )

]

Xi(t) =
∫ t

0
dτ Q(τ)

∫ τ

0
dt ′ Ii(t ′)V̇i(t ′, τ )q(i−1)(t ′, τ ).

(14)

4. Calculation of the functions q(i)(t′, t)

In order to derive the expression for q(1)(t ′, t), we use the geometrical constructions shown in
figure 2. The problem is that of how to find the probability that an arbitrary point O ′ taken on
the circumference of the ring of radius R2(t

′, t) is untransformed. This event must take place
satisfying the previously stated condition, i.e. the point O is also not transformed before time
t . Thus, we have for the pointO ′ a single-phase problem modified by the additional condition.
Let us specify a region 1′ of radius R1(t

′′, t ′), 0 < t ′′ < t ′, with the point O ′ as the centre. In
order that the above-stated event take place, the appearance of centres 1 must be excluded in
this region within the time interval 0 � t ′′ � t ′. The additional condition already excludes the
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appearance of these centres in region 1, i.e. in the region of radius R1(t
′′, t) with the point O

as the centre. Consequently, we must take into account only the part of region 1′ lying outside
region 1. Let v(t ′′, t ′, t) denote the volume of this part (figure 2). We consider for D = 3 two
overlapping spheres of radii r1, r2 and with the centre separation h. It is not difficult to derive
the following expression for the volume of the part of the second sphere lying outside the first
one:

�(r1, r2;h) = π

[
2

3
(r3

2 − r3
1 )− 1

12
h3 +

1

2
h(r2

1 + r2
2 ) +

1

4

(r2
1 − r2

2 )
2

h

]
(15)

where r1 > r2 and r1 − r2 � h � r1 + r2.

     O

O'

A

B

C

Figure 2. The calculation of q(1)(t ′, t). Full and dashed lines are the boundaries of regions at
times t ′ and t ′′ < t ′, respectively: |OA| = R1(t

′, t), |OB| = R1(t
′′, t), |OO ′| = R2(t

′, t),
|OC| = R2(t

′′, t). The region of volume v(t ′′, t ′, t), equation (16), is marked out.

We find v(t ′′, t ′, t) from the following formula:

v(t ′′, t ′, t) = �[R1(t
′′, t), R1(t

′′, t ′);R2(t
′, t)]. (16)

Now we obtain q(1)(t ′, t) using result (1) from the single-phase problem:

q(1)(t ′, t) = exp

[
−

∫ t ′

0
I1(t

′′)v(t ′′, t ′, t) dt ′′
]
. (17)

Overlapping of regions 1 and 1′ takes place if r1 + r2 > h; that is,

R1(t
′′, t) + R1(t

′′, t ′) > R2(t
′, t) (18)

and begins at the time t ′c determined by the equation

R1(0, t) + R1(0, t
′
c) = R2(t

′
c, t). (19)

In the time interval 0 < t ′ < t ′c, as long as the radius R1(0, t ′) is small enough, these
regions do not overlap. At t ′ > t ′c the regions overlap in the time interval 0 < t ′′ < t ′′c , and
then the overlap disappears, since the boundaries of these regions move at the velocity u1(t

′′),
i.e. the radii R1(t

′′, t ′) and R1(t
′′, t) decrease with this velocity. The time t ′′c is determined by

the following expression:

R1(t
′′
c , t) + R1(t

′′
c , t

′) = R2(t
′, t). (20)

For the constant growth rates uk , equation (19) has the form

u1t + u1t
′
c = u2(t − t ′c) (21)

from which we have

t ′c = t
u2 − u1

u2 + u1
≡ t

1 − α

1 + α
α ≡ u1

u2
. (22)
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In the limiting case u1 � u2 (α � 1), we get t ′c ≈ t . Therefore, the overlap is absent
over almost the whole interval 0 < t ′ < t , and v(t ′′, t ′, t) = V1(t

′′, t ′). In this case, q(1) is a
function of t ′ only, and expression (10) becomes simpler:

Q(t) = exp

[
−

∫ t

0
I1(t

′)V1(t
′, t) dt ′ −

∫ t

0
I2(t

′)V2(t
′, t)q(1)(t ′) dt ′

]
. (23)

The functions q(i)(t ′, t) for i > 1 are calculated similarly. So, q(2)(t ′, t) is the fraction of
the material untransformed at the distance R3(t

′, t) from the point O. Since there are nuclei
of the first and second phases in region 2–3, we use for its calculation the result (10) from the
two-phase problem in view of the correlation with the point O described above:

q(2)(t ′, t) = exp

[
−

∫ t ′

0
I1(t

′′)v1(t
′′, t ′, t) dt ′′

−
∫ t ′

0
dτ

∫ τ

0
dt ′′ I2(t

′′)
∂v2(t

′′, τ, t)
∂τ

q(1)(t ′′, τ )
]

(24)

where

v1(t
′′, t ′, t) = �[R1(t

′′, t), R1(t
′′, t ′);R3(t

′, t)]

v2(t
′′, t ′, t) = �[R2(t

′′, t), R2(t
′′, t ′);R3(t

′, t)].
(25)

5. Approximation of independent phases

As is evident from the foregoing, the calculation of the functions q(i)(t ′, t) is a rather
cumbersome procedure. It is desirable therefore to derive approximate but simpler expressions
for volume fractions. Let us consider the simplest approximation among the possible ones.
If we neglect the availability of the phases between the boundaries of regions (i − 1) and i,
i.e. put q(i−1) = 1, i = 2, . . . , n, then the equations for the volume fractions become identical:

dX0
i (t)/dt = Q0(t)

∫ t

0
Ii(t

′)V̇i(t ′, t) dt ′ i = 1, . . . , n (26)

whence we get

Q0(t) = exp

[
−

n∑
i=1

∫ t

0
Ii(t

′)Vi(t ′, t) dt ′
]

(27)

X0
i (t) =

∫ t

0
dτ Q0(τ )

∫ τ

0
dt ′ Ii(t ′)V̇i(t ′, τ ). (28)

In the case of constant nucleation and growth rates, the integrals are easily calculated:

Q0(t) = exp

[
−

( n∑
i=1

ki

)
tD+1

]
(29)

X0
i (t) =

[
ki

/( n∑
i=1

ki

)] {
1 − exp

[
−

( n∑
i=1

ki

)
tD+1

]}
(30)

where ki ≡ (g/(D + 1))IiuDi .
In this approximation, all the phases are equivalent despite the difference in growth rates;

there is no correlation between them. Equation (26) for the fraction of phase i has the same
form as equation (5) in the single-phase case. Also, expression (27) for the fraction of the
material untransformed has the form of a product of similar quantities: Q0

i = exp(−Yi(t)),
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for each phase in the appropriate single-phase problem (Yi(t) is the integral in (27)). For these
reasons, the given approximation can be called the ‘approximation of independent phases’.

Furthermore, the problem is that of estimating the error yielded by the AIP. First, we
shall establish some inequalities. If the functions q(i)(t ′, t) are calculated in the AIP with
substitution of Vj (t ′′, t ′) for vj (t ′′, t ′, t) in them, they have the following simple form:

q(i)(t ′) = exp

[
−

i∑
j=1

∫ t ′

0
Ij (t

′′)Vj (t ′′, t ′) dt ′′
]
. (31)

The values of volume fractions calculated using formulae (14) and (13) with the exact functions,
q(i)(t ′, t), and the approximate ones, q(i)(t ′), equation (31), are designated below by Qex(t),
Xex
i (t) and Qap(t), Xap

i (t), respectively. So, the expression for Qap(t) is

Qap(t) = Q0(t) exp

[
n∑
i=2

∫ t

0
Ii(t

′)Vi(t ′, t)(1 − q(i−1)(t ′)) dt ′
]
. (32)

Then the following inequalities hold:

Q0(t) < Qex(t) < Qap(t) (33)

X0
1(t) < Xex

1 (t) < X
ap

1 (t). (34)

We shall carry out assessments at constant nucleation and growth rates. First, we consider
the two-phase case. In this case, expression (32) becomes

Qap(t) = exp[−(k1 + k2)t
D+1 + ϕ(1)(t)] (35)

where

ϕ(1)(t) = (D + 1)k2

∫ t

0
(t − t ′)D

[
1 − exp(−k1t

′D+1)
]

dt ′.

The function ϕ(1)(t) determines the distinction betweenQap(t) andQ0(t). The expansion
of ϕ(1)(t) in terms of t is

ϕ(1)(t) = k1k2

A
t2(D+1) − k2

1k2

B
t3(D+1) ± · · · (36)

where A = 20 and 70, B = 168 and 990 for D = 2 and 3, respectively.
The difference �Q(t) = Qap(t)−Q0(t) is

�Q(t) = exp(−(k1 + k2)t
D+1)[exp(ϕ(1)(t))− 1]. (37)

Let us note that�Q(t) < exp(−k1t
D+1), since φ(1)(t) < k2t

D+1. Hence it follows that�Q(t)
tends to zero at large t . Also,�Q(0) = 0. Therefore, the function�Q(t) is not monotonic; it
has a maximum. In order to estimate its maximal value, �Qmax, we replace it by the simpler
function �Q(ξ), using two terms of expansion (36):

�Q(ξ) = (aξ 2 − bξ 3) exp(−ξ) ξ = (k1 + k2)t
D+1 (38)

where a = X0
1X

0
2/A, b = (X0

1)
2X0

2/B and X0
i = ki/(k1 + k2) is the volume fraction of phase

i in the AIP in the final state (t = ∞).
The highest possible values of the factors a and b are the following: max(a) = 1/4A (at

X0
1 = X0

2 = 1/2), max(b) = 4/27B (at X0
1 = 2/3, X0

2 = 1/3). These are small quantities
even for two dimensions. The substitution of �Q(ξ) for �Q(t) is justified by the smallness
of a, b. Thus, max(�Q(ξ)) < 4ae−2 � e−2/A, so we have the following inequality:

�Qmax < ε = e−2/A. (39)

Here, ε ≈ 7 × 10−3 and 2 × 10−3 for D = 2 and 3, respectively.
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We also evaluate the correction to the first-phase volume fraction calculated in the AIP in
the final state:

X
ap

1 = (D + 1)k1

∫ ∞

0
tD exp

[
−(k1 + k2)t

D+1 +
k1k2

A
t2(D+1) − k2

1k2

B
t3(D+1)

]
dt . (40)

After changing t to ξ , we have

X
ap

1 = X0
1

∫ ∞

0
e−ξ+aξ 2−bξ 3

dξ . (41)

In view of the smallness of the factors a and b, this integral can be replaced with the following
one:

X
ap

1 = X0
1

∫ ∞

0
e−ξ (1 + aξ 2 − bξ 3) dξ = X0

1(1 + δ) (42)

where δ = 2a − 6b.
The evaluation for δ is δ < 2a � 1/2A.
The estimate obtained, ε, δ � 1, together with inequalities (33), (34), shows that the

exact values of the volume fractions in a two-phase system practically do not differ from those
calculated in the AIP.

Passing on to the case of n phases, it is easy to write down the expression for Qap(t):

Qap(t) = exp

[
−

( n∑
i=1

ki

)
t (D+1) + φ(n−1)(t)

]
(43)

φ(n−1)(t) = (D + 1)
∫ t

0
(t − t ′)D{k2[1 − e−k1t

′D+1
] + k3[1 − e−(k1+k2)t

′D+1
]

+ · · · + kn[1 − e−(∑n−1
i=1 ki )t

′D+1
]} dt ′. (44)

The expansion of ϕ(n−1)(t) in a series is

ϕ(n−1)(t) = k1k2 + (k1 + k2)k3 + · · · + (k1 + · · · + kn−1)kn

A
t2(D+1)

− k2
1k2 + (k1 + k2)

2k3 + · · · + (k1 + · · · + kn−1)
2kn

B
t3(D+1) ± · · · . (45)

Repeating the procedure of assessments described above, we change the variable t to
ξ = (k1 + k2 + · · · + kn)tD+1. Accordingly, the factors a and b have the following forms now:

a = fA(X
0
1, . . . , X

0
n)/A b = fB(X

0
1, . . . , X

0
n)/B

fA = X0
1X

0
2 + (X0

1 +X0
2)X

0
3 + · · · + (X0

1 + · · · +X0
n−1)X

0
n

fB = (X0
1)

2X0
2 + (X0

1 +X0
2)

2X0
3 + · · · + (X0

1 + · · · +X0
n−1)

2X0
n.

(46)

It is not difficult to derive max(fA(X0
1, . . . , X

0
n)) = (n− 1)/2n < 1/2. Therefore, a < 1/2A,

and the above-stated evaluations apply with ε and δ twice as large as those for the two-
phase case.

Thus, the difference between the exact values of the volume fractions and those obtained
in the AIP may be thought of as negligible for a system with an arbitrary number of phases also.

Returning to the case of time-dependent nucleation and growth rates, we note the following
fact. The expansions of the functions

Yi(t) =
∫ t

0
Ii(t

′)Vi(t ′, t) dt ′
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and

Ỹi(t) =
∫ t

0
Ii(t

′)Vi(t ′, t)
[
1 − q(i−1)(t ′)

]
dt ′

in terms of t begin at tD+1 and t2(D+1), respectively. Therefore, the case given does not differ
fundamentally from the one considered.

6. Discussion

The main results of the present paper are the expressions for the volume fractions of competing
phases as well as providing the justification for using the AIP. Also, the proposed geometrical
probability method itself may be useful for solving other problems related to calculation of
volume fractions.

Notice that the problem given can also be solved in the framework of either the Kolmogorov
[1] or the Johnson and Mehl [2] approach. The latter is more descriptive, since it deals with
nuclei of phases immediately. Therefore, it is of interest to consider the solution (10)–(14) in
the context of this approach.

Two basic assumptions are used by Johnson and Mehl: (1) the colliding nuclei can inter-
grow without changing shape and (2) the new centres can appear over the whole volume of a
system including in the already transformed volume (fictitious centres). It is significant that
in the single-phase case, these assumptions do not distort the pattern of the actual process.
At the same time, the spatial homogeneity of distribution of the nuclei which results from
these assumptions essentially simplifies solving the problem. Hence, expression (1) is exact.
In the case of two competing phases (u2 > u1), assumption (2) distorts the actual picture:
the fictitious nuclei of the faster-growing phase located inside the slower-growing one go out
into the untransformed region with time and contribute to the incrementing of the amount
of material transformed (see figure 3(a)). The AIP expressions do not take into account this
effect and consequently give an excessive fraction of the faster-growing phase. At the same
time, expressions (10)–(14) take this effect into account: the factor q(i−1)(t ′, t) removes the
contribution of fictitious centres to the volume fraction of phase i. This can be shown directly

     a)

 b)

Figure 3. The typical configurations of nuclei in the Johnson–Mehl approach in the two-phase
case. Nuclei 1 and 2 are shown by full and dashed lines, respectively. (a) The black pieces represent
the contribution of fictitious nuclei to the incrementing of the real volume. (b) The ‘obstructive’
configuration: nucleus 2 passes through the continuous chain of nuclei 1 and contributes to the
incrementing of the real volume (the black piece).
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by deriving these expressions in the Johnson–Mehl approach reformulated in terms of the
theory of probability. However, this is beyond the scope of the present paper. This may also
be seen from the following reasoning. Expression (32) for n = 2 (or, what amounts to the
same thing, expression (23)) may be rewritten as

Qap(t) = exp{−Y1(t)− [Y2(t)− ϕ(1)(t)]} (47)

where

φ(1)(t) =
∫ t

0
I2(t

′)x1(t
′)V2(t

′, t) dt ′ x1(t
′) = 1 − q(1)(t ′).

Yi(t) is the ‘extended’ volume of phase i in the JMA approach [2, 3]; that is, the total volume
of spheres of the ith kind. x1(t) is the volume fraction of phase 1 in a single-phase case. The
product dp2(t

′) = I2(t
′)x1(t

′) dt ′ is the probability of the fictitious centre 2 appearing in dt ′.
If we use the exact function q(1)(t ′, t) instead of q(1)(t ′), then dp2(t

′) is the probability of the
appearance in dt ′ of the fictitious centre 2 which contributes at time t to the incrementing of
the real volume. So, the function ϕ(1)(t) is the extended volume of fictitious nuclei 2 which is
subtracted in (47) from the total extended volume of phase 2.

Some comments concerning the model used here should be made for the example of two
phases. Calculating the function q(1)(t ′, t) implies that the phase-2 centre appearing on the
region-2 boundary reaches the pointO at time t with probability equal to unity, in spite of the
presence of phase-1 nuclei in region 1–2 (black circles in figure 1). That is, these nuclei do
not prevent the critical centre from reaching the point O; its growth is not obstructed and not
retarded. The role of the phase-1 nuclei is just to occupy part of the volume. Such a situation
is a consequence of the model used and corresponds to the actual picture except some special
configurations of nuclei described below. Firstly, in theD = 2 space (and, to a greater extent,
for D = 3), there is the possibility of enveloping a nucleus 1 by a nucleus 2 with consequent
enclosure of the former. Secondly, in view of the restriction on the shape of the nucleus which is
used here (the shape remains spherical all the time), the process of enveloping may be replaced
by that of intergrowth of nuclei 1 and 2. Thus we have the following picture in the context of
the Johnson–Mehl approach. There are two kinds of sphere, each with its own nucleation and
growth rates. They arise throughout the system and intergrow after impingement (figure 3(a)).
The volume fraction of every kind of grain which is obtained in this process is given by the
solution presented. This is the direct extension of the Kolmogorov–Johnson–Mehl–Avrami
model to the two-phase case and seems to be a reasonable approach to this problem.

The analysis of the solution performed shows that the influence of fictitious centres
is negligible. It should be noted that all the assessments were made generally—that is,
independently of the relations between either nucleation or growth rates. The result is expressed
only in terms of combinations of these quantities, X0

i . In figure 4, the dependence of the
volume fractions in the two-phase case for D = 2 is shown via the dimensionless variable
ξ = (k1 + k2)t

3:

Q0(ξ) = exp(−ξ) (48)

Qap(ξ) = exp(−ξ + ϕ(1)(ξ)) (49)

φ(1)(ξ) = 3X0
2ξ

∫ 1

0
(1 − y2)[1 − e−X0

1ξy
3
] dy = aξ 2 − bξ 3 ± · · · (50)

X0
1(ξ) = X0

1[1 − e−ξ ] (51)

X
ap

1 (ξ) = X0
1

∫ ξ

0
Qap(ξ ′) dξ ′ (52)
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Figure 4. The volume fractions X0
1(ξ) (full lines 1–3), Xap1 (ξ) (dashed lines 1–3), Q0(ξ) (full

line 4) and Qap(ξ) (dashed line 4). Curves 1, 2 and 3 correspond to X0
1(∞) = 0.1, 0.5 and 0.9.

In the case of Qap(ξ), the curves corresponding to these values of X0
1(∞) are not distinct at the

present scale.

where X0
i ≡ X0

i (∞) and X0
1 +X0

2 = 1.
In figure 5, the following functions are shown:

�Q(ξ) = Qap(ξ)−Q0(ξ)

�X1(ξ) = X
ap

1 (ξ)−X0
1(ξ)

�X2(ξ) ≡ X0
2(ξ)−X

ap

2 (ξ) = �Q(ξ) +�X1(ξ).

As was stated above, passing from X0
i , Q0 to Xap

i , Qap corresponds to removing fictitious
nuclei 2. From this it follows that�Q(ξ) is the volume fraction of black pieces in figure 3(a).
As the overlap of spheres increases at a late stage of the process, the black pieces gradually
disappear (�Q(ξ) → 0). �X1(ξ) is the volume fraction of the parts of nuclei 1 which are
covered by the fictitious nuclei in figure 3(a) and contribute toX1(ξ) after removing the latter.
As to the case of n phases, we can write similarly

s(ξ) ≡
n∑
i=2

�Xi(ξ) = �Q(ξ) +�X1(ξ)

�Xi(ξ) ≡ X0
i (ξ )−X

ap

i (ξ) > 0 for i = 2, . . . , n

The following estimates are obtained:

�Xi(ξ) < s(ξ) � �Qmax +�X1(∞)

In the final state, ξ → ∞, s = �X1.
As is evident from figures 4 and 5, the dependences Qap(ξ) and Q0(ξ) as well as Xap

1 (ξ)

and X0
1(ξ) practically coincide, and the corresponding functions �Q(ξ) and �X2(ξ) are

negligibly small even for D = 2 which is in agreement with the analytical assessments made
above. For D = 3, the error yielded by use of the AIP is still smaller, because of the smaller
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Figure 5. The errors yielded by use of the AIP: �Q(ξ) (dotted lines), �X1(ξ) (dashed lines) and
�X2(ξ) (full lines). The curves 1–3 correspond to the same values of X0

1(∞) as in figure 4.

value of a. The error is maximal at X0
1 = X0

2 = 1/2, since the coefficient a is maximal at
these values.

The effect of fictitious nuclei cannot reveal itself for two reasons. Firstly, it develops over
time sufficiently slowly. This fact is reflected by the characteristic form of the function φ(1).
Its expansion, equation (50), starts at ξ 2; the coefficient a is small. Also, this is an oscillating
series, converging rapidly enough. Secondly, at the late stage of the process, ξ > 1, the growth
of the fictitious nuclei is inhibited because of the impingements on other nuclei (figure 3(a)).

The error yielded by using the AIP does not increase substantially with increase in the
number of phases, n. The increase of the error is obviously due to the increase in the number
of types of fictitious centre: the centres with i > 1 inside phase 1, the centres with i > 2
inside phase 2 etc. However, as before, the impingements of nuclei suppress the development
of this effect.

This reasoning suggests that generalization of the applicability of the AIP expressions to
other cases which are beyond the scope of the model considered is possible. That is, if any
effect sufficiently slowly developing with time is present in a system, the AIP expressions are
expected to be good approximations for the volume fractions. Let us consider two examples
of such geometrical effects relating to interaction between nuclei of different phases.

The first of them is present in the model considered but not taken into account by the
solution given: a nucleus 2 passes through a continuous chain consisting of nuclei 1 and
contributes to the incrementing of the real volume (figure 3(b)). This effect is obviously
like that of fictitious nuclei but manifests itself much more weakly than the latter for two
reasons. Firstly, the centre 2 is not inside a nucleus 1 of the chain but outside it. Secondly, the
probability of formation of such specific configurations is very small (for D = 3, there must
be a two-dimensional layer consisting of nuclei 1 instead of the chain). Taking into account
such ‘obstructive’ configurations in figure 1 would lead to a slight decrease of q(i). On the
other hand, the approximations as regards q(i) made in deriving Qap, Xap

i also decrease these
quantities. Thus this effect may be thought of as taken into account by the expressions forQap
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and Xap

i automatically, in view of its smallness.
The second effect is beyond the scope of the model considered but it may be present

in a real system. On a nucleus 2 enveloping a nucleus 1, the shape of the former near the
interface between these nuclei may deviate from spherical (figure 6). Rigorous analysis of
this phenomenon must of course include the physical mechanisms of growth. However, we
consider this process here purely mathematically, likening the growth of a nucleus to the
propagation of a spherical wave. Then this deviation is due to the difference in growth rates
of phases 1 and 2. It develops when the common point C (figure 6(a)) of the interface enters
the region of ‘geometrical shadow’ with respect to the centre 2,O2; that is, it becomes located
beyond the point of tangency, T (similarly, the front of a spherical wave is distorted beyond the
screen located on its path). It is seen from the definition of this effect itself that it develops at the
late stage when the overlaps of spheres take place to a great extent. In turn, the impingements
of nuclei at this stage will inhibit this process. Consequently, this effect is expected to also be
small. Let us consider schematically what form of analytical dependence describes it.

O1
O2

T

A

B
C

a)

b)

Figure 6. Enveloping of nucleus 1 (full) by nucleus 2 (dashed). The nucleus 2 shape,AC, deviates
from the spherical one, AB. (b) The special example of distortion of the shape of nucleus 2 due to
the effect of the enveloping. The shaded (a) and black (b) pieces are not taken into account by the
AIP expressions.

For simplicity, we consider the case of heterogeneous nucleation when the centres of both
phases are formed at t ′ = 0 with densities n1 and n2. The condition of tangency at time t
has the form r2 = (u2

1 + u2
2)t

2, where r = |O1O2| (figure 6(a)). In order that the nucleus 2
be ‘undisturbed’ at time t , it is necessary that no centres 1 should be in the region of radius r
with the point O2 as the centre. The probability of this event is q(t) = exp(−n1Vr(t)), where
Vr(t) is the volume of this region. Thus, n2q(t) ‘undisturbed’ spheres of volume V2(t) and
n2[1−q(t)] spheres of volume less than V2(t) are present in unit volume of a system at time t .
The volume of the latter is a random quantity. Denote its mean value by V̄ (t) = V2(t)−�V (t).
The extended volume of spheres 2 in the JMA approach is

Y2(t) = n2{q(t)V2(t) + [1 − q(t)]V̄ (t)} = n2{V2(t)− [1 − q(t)]�V (t)}. (53)

Hence, we obtain the following expression for the volume fraction of the untransformed
material:

Q(t) = Q0(t) exp[ψ(t)] ψ(t) ≡ n2 �V (t)[1 − e−n1Vr (t)] (54a)

where Q0(t) = exp[−n1V1(t)− n2V2(t)] is the AIP expression.
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Consider the case of D = 2. Introduce the dimensionless variable

ξ = π(n1u
2
1 + n2u

2
2)t

2

and the notation κ(ξ) ≡ �V (ξ)/V2(ξ), γ ≡ n1/n2. Then expression (53) turns into the
following:

Q(ξ) = exp[−ξ + ψ(ξ)] ψ(ξ) = κ(ξ)X0
2ξ [1 − e−(X0

1+γX0
2)ξ ] (54b)

where

X0
i = niu

2
i /(n1u

2
1 + n2u

2
2).

The exact form of the function �V (t) is unknown (this is the mean volume of the black
pieces in figure 6(b)). It would appear reasonable that it is small in comparison with V2(t),
with the result that κ(ξ) is rather a small quantity—possibly, κ � 1. Thus the influence of the
function ψ(ξ) on Q(ξ) is negligible, and the AIP expressions yield the values of the volume
fractions with high accuracy.
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